The monitoring of wind energy production is fundamental to improve the performances of a wind farm during the operational phase. In order to perform reliable operational analysis, data mining of all available information spreading out from turbine control systems is required. In this work a Supervisory Control and Data Acquisition (SCADA) data analysis was performed on a small wind farm and new post-processing methods are proposed for condition monitoring of the aerogenerators. Indicators are defined to detect the malfunctioning of a wind turbine and to select meaningful data to investigate the causes of the anomalous behaviour of a turbine. The operating state database is used to collect information about the proper power production of a wind turbine, becoming a tool that can be used to verify if the contractual obligations between the original equipment manufacturer and the wind farm operator are met. Results demonstrate that a proper selection of the SCADA data can be very useful to measure the real performances of a wind farm and thus to define optimal repair/replacement and preventive maintenance policies that play a major role in case of energy production. © Springer-Verlag Berlin Heidelberg 2014.
Advanced Data Mining Techniques for Power Performance Verification of an On-Shore Wind Farm
Garinei A;
2014-01-01
Abstract
The monitoring of wind energy production is fundamental to improve the performances of a wind farm during the operational phase. In order to perform reliable operational analysis, data mining of all available information spreading out from turbine control systems is required. In this work a Supervisory Control and Data Acquisition (SCADA) data analysis was performed on a small wind farm and new post-processing methods are proposed for condition monitoring of the aerogenerators. Indicators are defined to detect the malfunctioning of a wind turbine and to select meaningful data to investigate the causes of the anomalous behaviour of a turbine. The operating state database is used to collect information about the proper power production of a wind turbine, becoming a tool that can be used to verify if the contractual obligations between the original equipment manufacturer and the wind farm operator are met. Results demonstrate that a proper selection of the SCADA data can be very useful to measure the real performances of a wind farm and thus to define optimal repair/replacement and preventive maintenance policies that play a major role in case of energy production. © Springer-Verlag Berlin Heidelberg 2014.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.