Background: Mechanisms of cortical plasticity have been recently investigated in Alzheimer's disease (AD) patients with transcranial magnetic stimulation protocols showing a clear impairment of long-term potentiation (LTP) cortical-like plasticity mechanisms. Objective: We aimed to investigate mechanisms of cortico-cortical spike-timing dependent plasticity (STDP) in AD patients investigating the connections between posterior parietal cortex (PPC) and primary motor cortex (M1). Methods: We used a cortico-cortical paired associative stimulation (cc-PAS) protocol to repeatedly activate the connection between PPC and M1 of the left-dominant hemisphere in a sample of fifteen AD patients and ten age-matched healthy subjects. PPC transcranial magnetic stimulation preceded (ccPAS +5) or followed M1 stimulation (ccPAS -5) by 5 ms. Motor-evoked potentials (MEPs) were collected to assess the time course of the after effects of cc-PAS protocol measuring MEP amplitude as index of cortico-cortical associative plasticity. Results: In healthy subjects, ccPAS -5 protocol induced the expected long-lasting increase of MEP amplitude compatible with LTP-like cortical plasticity while PAS +5 protocol induced the opposite effect. AD patients did not show any significant modification of the amplitude of MEP after both ccPAS protocols. Conclusions: Our study shows that in AD patients the time-locked activation of human cortico-cortical connections is not able to form STDP, reflecting an impairment of a multi-factor plasticity process.

Impaired spike timing dependent cortico-cortical plasticity in Alzheimer's disease patients

Picazio S;
2018-01-01

Abstract

Background: Mechanisms of cortical plasticity have been recently investigated in Alzheimer's disease (AD) patients with transcranial magnetic stimulation protocols showing a clear impairment of long-term potentiation (LTP) cortical-like plasticity mechanisms. Objective: We aimed to investigate mechanisms of cortico-cortical spike-timing dependent plasticity (STDP) in AD patients investigating the connections between posterior parietal cortex (PPC) and primary motor cortex (M1). Methods: We used a cortico-cortical paired associative stimulation (cc-PAS) protocol to repeatedly activate the connection between PPC and M1 of the left-dominant hemisphere in a sample of fifteen AD patients and ten age-matched healthy subjects. PPC transcranial magnetic stimulation preceded (ccPAS +5) or followed M1 stimulation (ccPAS -5) by 5 ms. Motor-evoked potentials (MEPs) were collected to assess the time course of the after effects of cc-PAS protocol measuring MEP amplitude as index of cortico-cortical associative plasticity. Results: In healthy subjects, ccPAS -5 protocol induced the expected long-lasting increase of MEP amplitude compatible with LTP-like cortical plasticity while PAS +5 protocol induced the opposite effect. AD patients did not show any significant modification of the amplitude of MEP after both ccPAS protocols. Conclusions: Our study shows that in AD patients the time-locked activation of human cortico-cortical connections is not able to form STDP, reflecting an impairment of a multi-factor plasticity process.
2018
Alzheimer’s disease
connectivity
long-term potentiation
motor cortex
parietal cortex
plasticity
spike-timing dependent plasticity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/10910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
social impact