The ground state energy 𝐸_0(𝜆) of 𝐻_𝜆= −𝑑^2/𝑑𝑥^2 − 𝜆𝑒^−𝑥^2 is computed for small values of 𝜆 by means of an approximation of an integral operator in momentum space. Such an approximation leads to a transcendental equation for which 𝜖_0(𝜆) = |𝐸_0(𝜆)|^1/2 is the root.

A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension

Rinaldi F;
2016-01-01

Abstract

The ground state energy 𝐸_0(𝜆) of 𝐻_𝜆= −𝑑^2/𝑑𝑥^2 − 𝜆𝑒^−𝑥^2 is computed for small values of 𝜆 by means of an approximation of an integral operator in momentum space. Such an approximation leads to a transcendental equation for which 𝜖_0(𝜆) = |𝐸_0(𝜆)|^1/2 is the root.
2016
Hamiltonian
Integral Operators
Ground State Energy
File in questo prodotto:
File Dimensione Formato  
2125769.pdf

non disponibili

Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/1326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact