We discuss the probabilistic representation of the solutions of the heat equation perturbed by a repulsive point interaction in terms of a perturbation of Brownian motion, via a Feynman–Kac formula involving a local time functional. An application to option pricing is given, interpolating between the extreme cases of classical Black–Scholes options and knockouts having the barrier situated exactly at the exercise price.

Remarks on the heat equation with a point perturbation, the Feynman-Kac formula with local time and derivative pricing

Rinaldi F;
2015-01-01

Abstract

We discuss the probabilistic representation of the solutions of the heat equation perturbed by a repulsive point interaction in terms of a perturbation of Brownian motion, via a Feynman–Kac formula involving a local time functional. An application to option pricing is given, interpolating between the extreme cases of classical Black–Scholes options and knockouts having the barrier situated exactly at the exercise price.
2015
Feynman–Kac formula
Brownian motion, local time,
point interactions, heat equation,
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/1334
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact