Earthquakes induced liquefaction is one of the most significant causes of damage to structures during an earthquake. Ground improvement is currently considered to be the most appropriate mitigation tecnique to prevent soil liquefaction. This work is aimed to compare different liquefaction mitigation techniques for protection of small-to-medium sized ‘critical’ infrastructures and low-rise buildings. The effectiveness of some techniques (densification, addition of fine contents, induced partial saturation and drainage systems) was verified via experimental evidences coming from laboratory testing, physical modelling and liquefaction field prototype tests. Starting from the calibration of advanced soil constitutive models, numerical modelling activities were extended to the back-analysis of centrifuge tests and field prototype tests, up to a parametric study with different geometrical layouts. © 2019 IABSE. All rights reserved.

Experimental evidences of the effectiveness of some liquefaction mitigation measures

Lirer S;
2019-01-01

Abstract

Earthquakes induced liquefaction is one of the most significant causes of damage to structures during an earthquake. Ground improvement is currently considered to be the most appropriate mitigation tecnique to prevent soil liquefaction. This work is aimed to compare different liquefaction mitigation techniques for protection of small-to-medium sized ‘critical’ infrastructures and low-rise buildings. The effectiveness of some techniques (densification, addition of fine contents, induced partial saturation and drainage systems) was verified via experimental evidences coming from laboratory testing, physical modelling and liquefaction field prototype tests. Starting from the calibration of advanced soil constitutive models, numerical modelling activities were extended to the back-analysis of centrifuge tests and field prototype tests, up to a parametric study with different geometrical layouts. © 2019 IABSE. All rights reserved.
2019
978-385748163-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/2022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact