In distributional semantics studies, there is a growing attention in compositionally determining the distributional meaning of word sequences. Yet, compositional distributional models depend on a large set of parameters that have not been explored. In this paper we propose a novel approach to estimate parameters for a class of compositional distributional models: the additive models. Our approach leverages on two main ideas. Firstly, a novel idea for extracting compositional distributional semantics examples. Secondly, an estimation method based on regression models for multiple dependent variables. Experiments demonstrate that our approach outperforms existing methods for determining a good model for compositional distributional semantics.

Estimating Linear Models for Compositional Distributional Semantics

FALLUCCHI F;
2010-01-01

Abstract

In distributional semantics studies, there is a growing attention in compositionally determining the distributional meaning of word sequences. Yet, compositional distributional models depend on a large set of parameters that have not been explored. In this paper we propose a novel approach to estimate parameters for a class of compositional distributional models: the additive models. Our approach leverages on two main ideas. Firstly, a novel idea for extracting compositional distributional semantics examples. Secondly, an estimation method based on regression models for multiple dependent variables. Experiments demonstrate that our approach outperforms existing methods for determining a good model for compositional distributional semantics.
2010
1873923
File in questo prodotto:
File Dimensione Formato  
2010_COLING_ZanzottoKorkontzelosFallucchiManandhar.pdf

non disponibili

Dimensione 220.69 kB
Formato Adobe PDF
220.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/2186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
social impact