The uncertainty and variability of the Renewable Energy Sources (RES) power plants within the power grid is an open issue. The present study focuses on the use of batteries to overcome the limitations associated with the photovoltaic inverter operation, trying to maximize the global energy produced. A set of switches, was placed between a few photovoltaic modules and a commercial inverter, capable to change configuration of the plant dynamically. Such system stores the power that the inverter is not able to let into the grid inside batteries. At the base of this optimization, there is the achievement of two main configurations in which the batteries and the photovoltaic modules are electrically connected in an appropriate manner as a function of inverter efficiency and thus solar radiation. A control board and the relative program, to change the configuration, was designed and implemented, based on the value of the measured radiation, current, batteries voltage, and calculated inverter efficiency. Finally from the cost and impact analysis we can say that, today the technology of lithium batteries, for this application, is still too expensive in comparison with lead-acid batteries.

Experimental Tests to Recover the Photovoltaic Power by Battery System

Bocci E;Zuccari F
2015-01-01

Abstract

The uncertainty and variability of the Renewable Energy Sources (RES) power plants within the power grid is an open issue. The present study focuses on the use of batteries to overcome the limitations associated with the photovoltaic inverter operation, trying to maximize the global energy produced. A set of switches, was placed between a few photovoltaic modules and a commercial inverter, capable to change configuration of the plant dynamically. Such system stores the power that the inverter is not able to let into the grid inside batteries. At the base of this optimization, there is the achievement of two main configurations in which the batteries and the photovoltaic modules are electrically connected in an appropriate manner as a function of inverter efficiency and thus solar radiation. A control board and the relative program, to change the configuration, was designed and implemented, based on the value of the measured radiation, current, batteries voltage, and calculated inverter efficiency. Finally from the cost and impact analysis we can say that, today the technology of lithium batteries, for this application, is still too expensive in comparison with lead-acid batteries.
2015
Power plants
Renewable energy sources
Distributed generation
Photovoltaic
Energy storage.
File in questo prodotto:
File Dimensione Formato  
Experimental-tests-to-recover-the-photovoltaic-power-by-battery-system_2015_Energy-Procedia.pdf

non disponibili

Dimensione 861.14 kB
Formato Adobe PDF
861.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/4947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact