Considering the pressing challenges of supply security and climate change, advanced processes to produce electricity and biofuels from biomass have to be developed. Biomass gasification is a very promising technology, but there is a lack of comprehensive reviews, specifically on the technologies for hydrogen chloride hot gas cleanup, which are necessary in order to work at the same temperature and respect the limits of advanced downstream components. In this review, the Cl content of the main biomasses in Europe is given, and data on syngas content and the tolerance of downstream equipment are highlighted. Hot gas cleaning technologies, which have the advantage of improved thermal efficiency are reviewed, analyzing the thermodynamic and primary and secondary methods. This review identifies NaAlO2 and Na2CO3 within 450–550 °C as the most effective sorbents, which are able to reduce the concentration of HCl below 1 ppm. Nevertheless, H2S cannot be simultaneously removed and has to be removed first, because it reduces the HCl adsorption sorbent capacity.

A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas

Bocci E
2021-01-01

Abstract

Considering the pressing challenges of supply security and climate change, advanced processes to produce electricity and biofuels from biomass have to be developed. Biomass gasification is a very promising technology, but there is a lack of comprehensive reviews, specifically on the technologies for hydrogen chloride hot gas cleanup, which are necessary in order to work at the same temperature and respect the limits of advanced downstream components. In this review, the Cl content of the main biomasses in Europe is given, and data on syngas content and the tolerance of downstream equipment are highlighted. Hot gas cleaning technologies, which have the advantage of improved thermal efficiency are reviewed, analyzing the thermodynamic and primary and secondary methods. This review identifies NaAlO2 and Na2CO3 within 450–550 °C as the most effective sorbents, which are able to reduce the concentration of HCl below 1 ppm. Nevertheless, H2S cannot be simultaneously removed and has to be removed first, because it reduces the HCl adsorption sorbent capacity.
2021
biomass gasification
syngas
Hydrogen Chloride Removal
File in questo prodotto:
File Dimensione Formato  
energies-14-06519-v2.pdf

non disponibili

Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/4994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
social impact