Machine learning techniques are employed to describe the temporal behavior of soil moisture using meteorological data as inputs. Three different Artificial Neural Network models, a feedforward Multi-Layer Perceptron, a Long-Short Term Memory and the Adaptive Network-based Fuzzy Inference System, are trained and their results are compared. The soil moisture is expressed in terms of Soil Water Index, derived from satellite retrievals, with the last known value also being used as input. The results are promising as the proposed methodology relies on free-access data with a worldwide coverage, allowing to easily estimate the forthcoming soil moisture. The knowledge of the expected value of this variable could be extremely useful for irrigation scheduling and it is the basis of Decision Support Systems to efficiently manage water resources in agriculture.
Neural network models for soil moisture forecasting from remotely sensed measurements
Garinei A;
2020-01-01
Abstract
Machine learning techniques are employed to describe the temporal behavior of soil moisture using meteorological data as inputs. Three different Artificial Neural Network models, a feedforward Multi-Layer Perceptron, a Long-Short Term Memory and the Adaptive Network-based Fuzzy Inference System, are trained and their results are compared. The soil moisture is expressed in terms of Soil Water Index, derived from satellite retrievals, with the last known value also being used as input. The results are promising as the proposed methodology relies on free-access data with a worldwide coverage, allowing to easily estimate the forthcoming soil moisture. The knowledge of the expected value of this variable could be extremely useful for irrigation scheduling and it is the basis of Decision Support Systems to efficiently manage water resources in agriculture.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.