A tailored model for the assessment of environmental benefits achievable by “light-weighting” in the automotive field is presented. The model is based on the Fuel Reduction Value (FRV) coefficient, which expresses the Fuel Consumption (FC) saving involved by a 100 kg mass reduction. The work is composed of two main sections: simulation and environmental modelling. Simulation modelling performs an in-depth calculation of weight-induced FC whose outcome is the FRV evaluated for a wide range of Diesel Turbocharged (DT) vehicle case studies. Environmental modelling converts fuel saving to impact reduction basing on the FRVs obtained by simulations. Results show that for the considered case studies, FRV is within the range 0.115–0.143 and 0.142–0.388 L/100 km 100 kg, respectively, for mass reduction only and powertrain adaptation (secondary effects). The implementation of FRVs within the environmental modelling represents the added value of the research and makes the model a valuable tool for application to real case studies of automotive lightweight LCA.

Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles

DEL PERO, FRANCESCO;
2016-01-01

Abstract

A tailored model for the assessment of environmental benefits achievable by “light-weighting” in the automotive field is presented. The model is based on the Fuel Reduction Value (FRV) coefficient, which expresses the Fuel Consumption (FC) saving involved by a 100 kg mass reduction. The work is composed of two main sections: simulation and environmental modelling. Simulation modelling performs an in-depth calculation of weight-induced FC whose outcome is the FRV evaluated for a wide range of Diesel Turbocharged (DT) vehicle case studies. Environmental modelling converts fuel saving to impact reduction basing on the FRVs obtained by simulations. Results show that for the considered case studies, FRV is within the range 0.115–0.143 and 0.142–0.388 L/100 km 100 kg, respectively, for mass reduction only and powertrain adaptation (secondary effects). The implementation of FRVs within the environmental modelling represents the added value of the research and makes the model a valuable tool for application to real case studies of automotive lightweight LCA.
2016
automotive
fuel consumption
Fuel Reduction Value (FRV)
Life Cycle Assessment (LCA)
light-weighting
vehicle system dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/6713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
social impact