The paper contributes at filling the lack of knowledge on Photovoltaic (PV) panels recycling through the analysis of a mobile mechanical treatment plant developed within the context of a European project. The process, the machinery installed in the system and their main functionalities are described. The data are used to perform a Life Cycle Assessment (LCA) focused on the End-of-Life (EoL) process, assuming as Functional Unit (FU) the treatment of a 20 kg PV panel. The system boundaries include construction and operation of the device as well as recycling and incineration of different material fractions performed outside the plant. The inventory is mainly based on primary data coming from a collection carried out directly on the recycling device. The results show that impacts are concentrated on operation stage mainly due to energy consumption involved in milling and separation activities. The analysis of different operation steps reveals that pre-treatment gives the highest contribution, followed by glass and silicon separation with the lowest quota attributable to copper and polymeric fraction separation. Considering also recycling and incineration processes of EoL waste, the environmental credits due to the avoided production of virgin raw materials counterbalance the burdens of construction and operation for most of impact categories. The comparison of results with existing LCAs of fixed recycling installations stresses that the use of a mobile system involves considerable environmental benefits thanks to the reduction of transports needed to move EoL PV waste to the recycling facility site.

Innovative device for mechanical treatment of End of Life photovoltaic panels: Technical and environmental analysis

Del Pero F.;
2019-01-01

Abstract

The paper contributes at filling the lack of knowledge on Photovoltaic (PV) panels recycling through the analysis of a mobile mechanical treatment plant developed within the context of a European project. The process, the machinery installed in the system and their main functionalities are described. The data are used to perform a Life Cycle Assessment (LCA) focused on the End-of-Life (EoL) process, assuming as Functional Unit (FU) the treatment of a 20 kg PV panel. The system boundaries include construction and operation of the device as well as recycling and incineration of different material fractions performed outside the plant. The inventory is mainly based on primary data coming from a collection carried out directly on the recycling device. The results show that impacts are concentrated on operation stage mainly due to energy consumption involved in milling and separation activities. The analysis of different operation steps reveals that pre-treatment gives the highest contribution, followed by glass and silicon separation with the lowest quota attributable to copper and polymeric fraction separation. Considering also recycling and incineration processes of EoL waste, the environmental credits due to the avoided production of virgin raw materials counterbalance the burdens of construction and operation for most of impact categories. The comparison of results with existing LCAs of fixed recycling installations stresses that the use of a mobile system involves considerable environmental benefits thanks to the reduction of transports needed to move EoL PV waste to the recycling facility site.
2019
End-of-Life
Environmental impact
Life Cycle Assessment
Photovoltaic panels
Recovery
Recycling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/6722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
social impact