Investing in early-stage companies is incredibly hard, especially when no data are available to support the decision process. Venture capitalists often rely on gut feeling or heuristics to reach a decision, which is biased and potentially harmful. This work proposes a new data-driven framework to help investors be more effective in selecting companies with a higher probability of success. We built upon existing interdisciplinary research and augmented it with further analysis on more than 600,000 companies over a 20-year timeframe. The resulting framework is therefore a smart checklist of 21 relevant features that may help investors to select the companies more likely to succeed.

Hacking the venture industry: An Early-stage Startups Investment framework for data-driven investors

Cervellati, Enrico Maria
2021-01-01

Abstract

Investing in early-stage companies is incredibly hard, especially when no data are available to support the decision process. Venture capitalists often rely on gut feeling or heuristics to reach a decision, which is biased and potentially harmful. This work proposes a new data-driven framework to help investors be more effective in selecting companies with a higher probability of success. We built upon existing interdisciplinary research and augmented it with further analysis on more than 600,000 companies over a 20-year timeframe. The resulting framework is therefore a smart checklist of 21 relevant features that may help investors to select the companies more likely to succeed.
2021
Venture capital
Machine learning
Business angels
Artificial intelligence
Gradient Tree Boosting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/7431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact