The present Compact Muon Solenoid Resistive Plate Chambers system has been worked efficiently during Run I and Run II of data taking period (Shah et al., 2020) [1]. In the coming years of operation with the High Luminosity LHC (HL-LHC), the expected rate and integrated charge are expected to be about 600 Hz/cm2 and 840 mC/cm2, respectively (including a safety factor of three). Therefore, the HL-LHC phase will be a challenge for the RPC system since the expected operating conditions are much harsher than those for which the detectors have been designed, and could introduce non-recoverable aging effects which can alter the detector properties. A longevity test has been started at the CERN Gamma Irradiation Facility to estimate the impact of HL-LHC conditions on the RPC detector performance in order to determine whether the RPC system will survive the harsher background conditions expected at HL-LHC. The latest results of the irradiation test will be presented.

Latest results of Longevity studies on the present CMS RPC system for HL-LHC phase

Meola Sabino
2023-01-01

Abstract

The present Compact Muon Solenoid Resistive Plate Chambers system has been worked efficiently during Run I and Run II of data taking period (Shah et al., 2020) [1]. In the coming years of operation with the High Luminosity LHC (HL-LHC), the expected rate and integrated charge are expected to be about 600 Hz/cm2 and 840 mC/cm2, respectively (including a safety factor of three). Therefore, the HL-LHC phase will be a challenge for the RPC system since the expected operating conditions are much harsher than those for which the detectors have been designed, and could introduce non-recoverable aging effects which can alter the detector properties. A longevity test has been started at the CERN Gamma Irradiation Facility to estimate the impact of HL-LHC conditions on the RPC detector performance in order to determine whether the RPC system will survive the harsher background conditions expected at HL-LHC. The latest results of the irradiation test will be presented.
2023
CMS
RPC
Aging
HL-LHC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14241/9097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact